Status of polarized pdf's and the role of the gluon

Daniel de Florian Dpto. de Física - FCEyN Universidad de Buenos Aires

Electromagnetic Interactions with Nucleons and Nuclei

(EINN 2009)

Milos, September 30 2009

Departamento de Física Juan José Giambiagi

Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

Outline

- Introduction: spin sum rule
- DSSV analysis
- The polarized Gluon
- Summary

Ουτλινε

- . Ιντροδυχτιον : σπιν συμ ρυλε
- . Τηε πολαριζεδ Γλυον
- . Συμμαρψ

(Longitudinal) Spin structure of the proton

Naive expectation SU(6) : 70% corresponds to Quark Spin

(Longitudinal) Spin structure of the proton

Spin share between components

$$\frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_G = \frac{1}{2} \qquad \text{Jaffe-Manohar} \\ \begin{array}{c} \text{Quark} & \text{Gluon} \\ \text{Spin} & \text{Spin} \end{array} \quad \text{OAM} \end{array}$$

Naive expectation SU(6) : 70% corresponds to Quark Spin

Measure at polarized DIS : structure function

d

$$g_{1}(x,Q^{2}) = \frac{1}{2} \sum_{q} e_{q}^{2} \left[\Delta q(x,Q^{2}) + \Delta \bar{q}(x,Q^{2}) \right]$$
Polarized PDFs $\Delta f_{i}(x,Q^{2}) \equiv f_{i}^{\uparrow}(x,Q^{2}) - f_{i}^{\downarrow}(x,Q^{2})$

$$\frac{1}{2} \begin{pmatrix} \Delta q \\ \Delta g \end{pmatrix} (x,Q^{2}) = \int_{x}^{1} \frac{dz}{z} \begin{pmatrix} \Delta P_{qq}(\alpha_{s}(Q^{2}),z) & \Delta P_{qg}(\alpha_{s}(Q^{2}),z) \\ \Delta P_{gq}(\alpha_{s}(Q^{2}),z) & \Delta P_{gg}(\alpha_{s}(Q^{2}),z) \end{pmatrix} \begin{pmatrix} \Delta q \\ \Delta g \end{pmatrix} \left(\frac{x}{z},Q^{2}\right)$$

Quark and Gluon spin contributions

$$\Delta \Sigma = \sum_{i} \int_{0}^{1} \Delta q_{i}(x, Q^{2}) dx \qquad \Delta G = \int_{0}^{1} \Delta g(x, Q^{2}) dx$$

 $\Delta\Sigma\sim 0.0\pm 0.24$ $(Q^2=10\,{
m GeV}^2)$ 'spin crisis puzzle'

 $\Delta\Sigma \sim 0.0 \pm 0.24$ ($Q^2 = 10 \,\mathrm{GeV}^2$) 'spin crisis puzzle'

Any way to recover naive expectation?

 $\begin{array}{ll} \mbox{Gluon contribution through Anomaly} & \mbox{Altarelli, Ross} \\ \mbox{Efremov, Teryaev} \end{array}$ $\begin{array}{ll} \mbox{`gluon contamination'} \\ \mbox{$\Delta\Sigma^{exp} = \Delta\Sigma - 3\frac{\alpha_s}{2\pi}\Delta G$} \\ \mbox{$\sim 0$} & \mbox{$\sim 0.7$} & \mbox{$\Delta G > 5 !!$} & \mbox{unnaturally large} \end{array}$

Increased the interest on measuring the gluon contribution (full set of pdfs)

Polarized PDFs

Several attempts to obtain polarized PDFs during the last decade A few of them:

- •E.Leader, A.V.Sidorov and D.B.Stamenov, LSS
- •M. Glück, E. Reya, M. Stratmann and W. Vogelsang, GRSV
- •T. Gehrmann and W.J. Stirling, GS
- •J. Bluemlein and H. Boettcher, **BB**
- •Asymmetry Analysis Collaboration, AAC
- •DdF and R. Sassot, DS
- •DdF, G.A. Navarro and R. Sassot, DNS
- •C. Bourrely, F. Buccella and J. Soffer, BBS
- •G. Altarelli, R. Ball, S. Forte, G.Ridolfi, ABFS
- SMC
- HERMES
- •+ several others

All fits include DIS data : agree on 'quark' Differ on assumptions about the sea Huge differences on gluon distribution

DIS fixed target

$$\Delta G(Q^2 = 10) \sim 1 - 2$$

First GLOBAL analysis at NLO accuracy

DdF, R.Sasspt[04:Stratmann, W.Vogelsang (DSSV)

experiment	data	data points
	type	fitted
EMC, SMC	DIS	34
COMPASS	DIS	15
E142, E143, E154, E155	DIS	123
HERMES	DIS	39
HALL-A	DIS	3
CLAS	DIS	20
SMC	SIDIS, h^{\pm}	48
HERMES	SIDIS, h^{\pm}	54
	SIDIS, π^{\pm}	36
	SIDIS, K^{\pm}	27
COMPASS	SIDIS, h^{\pm}	24
PHENIX (in part prel.)	$200{\rm GeV}~{\rm pp},\pi^0$	20
PHENIX (prel.)	$62{ m GeV}$ pp, π^0	5
STAR (in part prel.)	$200{\rm GeV}$ pp, jet	19
TOTAL:		467

jet @ STAR $p_T \ge 5 \,\mathrm{GeV}$ pions @ Phenix $p_T^{\pi} \ge 1 \,\mathrm{GeV}$ DIS/SIDIS $Q \ge 1 \,\mathrm{GeV}$

Data Selection

Important lesson from unpolarized physics : use "safe" observables Parton Model Factorization

 $d\Delta\sigma = \sum_{ab} \int dx_a \int dx_b \,\Delta f_a(x_a, Q^2) \Delta f_b(x_b, Q^2) \times d\Delta \hat{\sigma}_{ab}(x_a, x_b, p_T, \alpha_s(Q^2), p_T/Q)$ partonic cross-section

Only Rule (not bias): Check that works on the unpolarized case! Solid basis for the analysis

First develop new set of fragmentation functions to validate semi-inclusive processes DSS fragmentation (DdeF, Sassot, Stratmann) from e+e-, ep and pp collisions

SIDIS $\checkmark pp \rightarrow \pi \checkmark$

Data Selection

Important lesson from unpolarized physics : use "safe" observables Parton Model Factorization

 $d\Delta\sigma = \sum_{ab} \int dx_a \int dx_b \,\Delta f_a(x_a, Q^2) \Delta f_b(x_b, Q^2) \times d\Delta \hat{\sigma}_{ab}(x_a, x_b, p_T, \alpha_s(Q^2), p_T/Q)$ partonic cross-section

Only Rule (not bias): Check that works on the unpolarized case! Solid basis for the analysis

First develop new set of fragmentation functions to validate semi-inclusive processes DSS fragmentation (DdeF, Sassot, Stratmann) from e+e-, ep and pp collisions

SIDIS $\checkmark \quad pp \rightarrow \pi \checkmark$

Do not include: "high pT" hadrons from Compass and Hermes No NLO description available (soon!) Not clear pQCD works well : check unpolarized?

Global Fit

PDFs obtained by global fit : χ^2 minimization

Use Lagrange Multipliers technique to estimate uncertainties (from exp. errors) on some observables

$$\Phi(\lambda_i, \{a_j\}) = \chi^2(\{a_j\}) + \sum_i \lambda_i \mathcal{O}_i(\{a_j\})$$

See how fit deteriorates when PDFs forced to give different prediction for \mathcal{O}_i

 $\Delta \chi^2_n$ We take a pragmatic 2% to define uncertainty bands

First moments as 'observables'

RHIC observables

Green bands corresponds to $\Delta \chi^2 = 1$ Yellow bands corresponds to $\Delta \chi^2/\chi^2 = 2\%$

 $\chi^2/\mathrm{pdf} = 0.86$

PDFs and "uncertainties"

Robust pattern : SU(3) sea

 $\Delta \bar{d}$: negative

 $\Delta \bar{s}$: SIDIS requires positive (HERMES) but first moment negative (DIS)

SIDIS relies on DSS frag. functions DdeF, Sassot, Stratmann (DSS)

Sum Rule

c^1		$x_{\min} = 0$	x_{\min}	$x_{\min} = 0.001$	
$\Delta f(x,Q^2) dx$		best fit	$\Delta \chi^2 = 1$	$\Delta \chi^2 / \chi^2 = 2\%$	
Jx_{\min}	$\Delta u + \Delta \bar{u}$	0.813	$0.793 \begin{array}{c} +0.011 \\ -0.012 \end{array}$	$0.793 \begin{array}{c} +0.028 \\ -0.034 \end{array}$	
$Q^2 = 10 \mathrm{GeV}^2$	$\Delta d + \Delta \bar{d}$	-0.458	$-0.416 \begin{array}{c} +0.011 \\ -0.009 \end{array}$	$-0.416 \begin{array}{c} +0.035 \\ -0.025 \end{array}$	
	$\Delta \bar{u}$	0.036	$0.028 \begin{array}{c} +0.021 \\ -0.020 \end{array}$	$0.028 \begin{array}{c} +0.059 \\ -0.059 \end{array}$	
	$\Delta \bar{d}$	-0.115	$-0.089 + 0.029 \\ -0.029$	$-0.089 \begin{array}{c} +0.090 \\ -0.080 \end{array}$	
	$\Delta \bar{s}$	-0.057	$-0.006 \pm 0.010 \\ -0.012$	-0.006 + 0.028 - 0.031	
	Δg	-0.084	$0.013 \begin{array}{c} +0.106 \\ -0.120 \end{array}$	$0.013 \begin{array}{c} +0.702 \\ -0.314 \end{array}$	
	$\Delta\Sigma$	0.242	$0.366 \stackrel{+0.015}{_{-0.018}}$	$0.366 \begin{array}{c} +0.042 \\ -0.062 \end{array}$	

large (negative) contribution from small x extrapolation unreliable for gluons

Sum Rule

ℓ^1		$x_{\min} = 0$	x_{\min} :	$x_{\min} = 0.001$	
$\Delta f(x,Q^2) dx$		best fit	$\Delta \chi^2 = 1$	$\Delta \chi^2 / \chi^2 = 2\%$	
Jx_{\min}	$\Delta u + \Delta \bar{u}$	0.813	$0.793 \begin{array}{c} +0.011 \\ -0.012 \end{array}$	$0.793 \begin{array}{c} +0.028 \\ -0.034 \end{array}$	
$Q^2 = 10 \mathrm{GeV}^2$	$\Delta d + \Delta \bar{d}$	-0.458	$-0.416 \begin{array}{c} +0.011 \\ -0.009 \end{array}$	$-0.416 \begin{array}{c} +0.035 \\ -0.025 \end{array}$	
	$\Delta \bar{u}$	0.036	$0.028 \begin{array}{c} +0.021 \\ -0.020 \end{array}$	$0.028 \begin{array}{c} +0.059 \\ -0.059 \end{array}$	
	$\Delta \bar{d}$	-0.115	$-0.089 \begin{array}{c} +0.029 \\ -0.029 \end{array}$	$-0.089 \begin{array}{c} +0.090 \\ -0.080 \end{array}$	
	$\Delta \bar{s}$	-0.057	$-0.006 \stackrel{+0.010}{0.012}$	-0.006 + 0.028 - 0.031	
	Δg	-0.084	$0.013 \begin{array}{c} +0.106 \\ -0.120 \end{array}$	$0.013 \begin{array}{c} +0.702 \\ -0.314 \end{array}$	
	$\Delta\Sigma$	0.242	$0.366 \begin{array}{c} +0.015 \\ -0.018 \end{array}$	$0.366 \begin{array}{c} +0.042 \\ -0.062 \end{array}$	

large (negative) contribution from small x extrapolation unreliable for gluons

...no proceedings...to encourage the presentation of preliminary results, speculative ideas..

Michel Garçon

Sum Rule

$\int_{-\infty}^{1}$		$x_{\min} = 0$	$x_{\min} = 0.001$	
$\Delta f(x,Q^2) dx$		best fit	$\Delta \chi^2 = 1$	$\Delta \chi^2 / \chi^2 = 2\%$
Jx_{\min}	$\Delta u + \Delta \bar{u}$	0.813	$0.793 \begin{array}{c} +0.011 \\ -0.012 \end{array}$	$0.793 \begin{array}{c} +0.028 \\ -0.034 \end{array}$
$Q^2 = 10 \mathrm{GeV^2}$	$\Delta d + \Delta \bar{d}$	-0.458	$-0.416 \begin{array}{c} +0.011 \\ -0.009 \end{array}$	$-0.416 \begin{array}{c} +0.035 \\ -0.025 \end{array}$
	$\Delta \bar{u}$	0.036	$0.028 \begin{array}{c} +0.021 \\ -0.020 \end{array}$	$0.028 \begin{array}{c} +0.059 \\ -0.059 \end{array}$
	$\Delta \overline{d}$	-0.115	$-0.089 \begin{array}{c} +0.029 \\ -0.029 \end{array}$	$-0.089 \begin{array}{c} +0.090 \\ -0.080 \end{array}$
	$\Delta \bar{s}$	-0.057	$-0.006 \stackrel{+0.010}{-0.012}$	-0.006 + 0.028 - 0.031
	Δg	-0.084	$0.013 \begin{array}{c} +0.106 \\ -0.120 \end{array}$	$0.013 \begin{array}{c} +0.702 \\ -0.314 \end{array}$
	$\Delta\Sigma$	0.242	$0.366 \substack{+0.015 \\ -0.018}$	$0.366 \begin{array}{c} +0.042 \\ -0.062 \end{array}$

large (negative) contribution from small x extrapolation unreliable for gluons

...no proceedings...to encourage the presentation of preliminary results, speculative ideas..

Michel Garçon

What if ?
$$\Delta G \sim -\frac{1}{2}\Delta \Sigma$$

AdS/CFT result in strong coupling limit (Gao, Xiao, Hatta, Ueda)

'Static' Scenario?

What if ? $\Delta G \sim -\frac{1}{2}\Delta\Sigma$ (at some Q²)

$$\frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_G = \frac{1}{2}$$

All spin by OAM

max. violation of naive expectation

'Static' Scenario?

What if ? $\Delta G \sim -\frac{1}{2}\Delta\Sigma$ (at some Q²)

$$\frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_G = \frac{1}{2}$$

All spin by OAM

max. violation of naive expectation

'Static' Scenario?

What if ? $\Delta G \sim -\frac{1}{2}\Delta\Sigma$ (at some Q²)

$$\frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_G = \frac{1}{2}$$

All spin by OAM

max. violation of naive expectation

Future of ΔG

TH: Understand better COMPASS observables (and keep asking for cross-sections!)

DIS: COMPASS and JLAB-12 data (evolution)

RHIC: more precise and at 500 GeV (smaller x)

Less inclusive observables

Dijets Jet + pion pion + photon

Less inclusive allows to perform a more detailed selection

Cuts to enhance sensitivity on some partonic channel Slightly different scales

Summary

- Learnt a lot about polarized pdfs and proton spin contribution
- Reasonable knowledge on quark, more work needed for antiquarks
- Gluon polarization much smaller than expected at medium x

But still far from solving the spin sum rule puzzle: huge uncertainty

Thanks

Uncertainties

Use Lagrange Multipliers technique to estimate uncertainties (from exp. errors) on some observables

$$\Phi(\lambda_i, \{a_j\}) = \chi^2(\{a_j\}) + \sum_i \lambda_i \mathcal{O}_i(\{a_j\})$$

See how fit deteriorates when PDFs forced to give different prediction for \mathcal{O}_i

 $\Delta \chi_n^2$ should be parabolic if data set can determine the observable (otherwise monotonic o flat)

 $\Delta \chi_n^2$ We take a pragmatic 2% to define uncertainty bands

Use Hessian Method to estimate uncertainties (from exp. errors) on pdfs (J.Pumplin and CTEQ)

38 DSSV eigenvector sets to compute uncertainties on any observable Unfortunately only for $\Delta \chi_n^2 = I$

$$\Delta \mathcal{O}_i = \frac{1}{2} \left(\sum_{k=1}^{N_{\text{par}}} \left[\mathcal{O}_i(S_k^+) - \mathcal{O}_i(S_k^-) \right]^2 \right)^{1/2}$$

Profiles

Hessian vs Lagrange

Compass/Hermes $\Delta G/G$

Two hadron production : gluon enters at Lowest order enhanced contribution

* Low transverse momentum/less inclusive

- * Photoproduction : resolved polarized photon?
- only lowest order analysis : if factorization works,
 NLO corrections expected to be large

✓ Pion production at RHIC OK $p_T^{\pi} \ge 1 \, {
m GeV}$

DdF., R.Sassot, M.Stratmann

DSS fragmentation functions extracted from a global fit that includes RHIC and HERMES unpolarized data!

All other FF sets fail to reproduce Hermes data

SPIN SUM RULES

Jaffe, Manohar

Partonic interpretation local operator only in light cone gauge

$$\frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_g = \frac{1}{2}$$

Gauge invariant Lattice and GPDs Contains interactions

$$\frac{1}{2}\Delta\Sigma + L'_q + J_g = \frac{1}{2}$$

Chen, Lu, Sun, Wang, Goldman

Gauge invariant physical interpretation ? related to new pdfs ?

$$\frac{1}{2}\Delta\Sigma'' + \Delta G'' + L_q'' + L_g'' = \frac{1}{2}$$

Technical Issues and Mellin

Technical Problem: several evaluations of evolved PDFS and observables Evolution of PDFs and NLO corrections involve convolutions: time consuming

Mellin space : convolutions turn into products

$$\Delta f_j^n(Q^2) \equiv \int_0^1 dx \, x^{n-1} \, \Delta f_j(x, Q^2) \qquad \qquad \int f \otimes g \to f^n \times g^n$$

Exact (analytic) solution for DGLAP equations and DIS and SIDIS coefficients Efficient (fast) inversion possible

Rather more complicated for pp observables

$$d\Delta \sigma = -\frac{1}{4\pi^2} \sum_{ab} \int_{\mathcal{C}_n} dn \int_{\mathcal{C}_m} dm \Delta f_a^n (Q^2) \Delta f_b^m (Q^2) \\ \times \int dx_a \int dx_b \ x_a^{-n} \ x_b^{-m} d\Delta \hat{\sigma}_{ab} (x_a, x_b, \ldots) \\ \equiv \Delta \hat{\sigma}_{ab}^{n,m} \quad \text{pre- compute } n \times m \text{ grids in complex space } \\ \underset{\text{M.Stratmann, W.Vogelsang}}{\text{Mew: any observable possible using sampling techniques faster evaluation ~I day-computer } \\ \text{dijets with exp. cuts} \end{cases}$$

Flavor separation still dependent of FF (unpol. Hermes multiplicities)

